5 research outputs found

    Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection

    Get PDF
    Virgen del Rocío Hospital COVID-19 Working Team José Miguel Cisneros, Sonsoles Salto-Alejandre, Judith Berastegui-Cabrera, Pedro Camacho-Martínez, Carmen Infante-Domínguez, Marta Carretero-Ledesma, Juan Carlos Crespo-Rivas, Eduardo Márquez, José Manuel Lomas, Claudio Bueno, Rosario Amaya, José Antonio Lepe, Jerónimo Pachón, Elisa Cordero, Javier Sánchez-Céspedes, Manuela Aguilar-Guisado, Almudena Aguilera, Clara Aguilera, Teresa Aldabo-Pallas, Verónica Alfaro-Lara, Cristina Amodeo, Javier Ampuero, María Dolores Avilés, Maribel Asensio, Bosco Barón-Franco, Lydia Barrera-Pulido, Rafael Bellido-Alba, Máximo Bernabeu-Wittel, Candela Caballero-Eraso, Macarena Cabrera, Enrique Calderón, Jesús Carbajal-Guerrero, Manuela Cid-Cumplido, Yael Corcia-Palomo, Juan Delgado, Antonio Domínguez-Petit, Alejandro Deniz, Reginal Dusseck-Brutus, Ana Escoresca-Ortega, Fátima Espinosa, Nuria Espinosa, Michelle Espinoza, Carmen Ferrándiz-Millón, Marta Ferrer, Teresa Ferrer, Ignacio Gallego-Texeira, Rosa Gámez-Mancera, Emilio García, Horacio García-Delgado, Manuel García-Gutiérrez, María Luisa Gascón-Castillo, Aurora González-Estrada, Demetrio González, Carmen Gómez-González, Rocío González-León, Carmen Grande-Cabrerizo, Sonia Gutiérrez, Carlos Hernández-Quiles, Inmaculada Concepción Herrera-Melero, Marta Herrero-Romero, Luis Jara, Carlos Jiménez-Juan, Silvia Jiménez-Jorge, Mercedes Jiménez-Sánchez, Julia Lanseros-Tenllado, Carmina López, Isabel López, Álvaro López-Barrios, Luis F. López-Cortés, Rafael Luque-Márquez, Daniel Macías-García, Guillermo Martín-Gutiérrez, Luis Martín-Villén, José Molina, Aurora Morillo, María Dolores Navarro-Amuedo, Dolores Nieto-Martín, Francisco Ortega, María Paniagua-García, Amelia Peña-Rodríguez, Esther Pérez, Manuel Poyato, Julia Praena-Segovia, Rafaela Ríos, Cristina Roca-Oporto, Jesús F. Rodríguez, María Jesús Rodríguez-Hernández, Santiago Rodríguez-Suárez, Ángel Rodríguez-Villodres, Nieves Romero-Rodríguez, Ricardo Ruiz, Zida Ruiz de Azua, Celia Salamanca, Sonia Sánchez, Víctor Manuel Sánchez-Montagut, César Sotomayor, Alejandro Suárez Benjumea & Javier ToralSevere Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin β7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19.This work was supported by Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades Junta de Andalucia (research Project CV20-85418), Consejeria de salud Junta de Andalucia (Research Contract RH-0037-2020 to JV) the Instituto de Salud Carlos III (CP19/00159 to AGV, FI17/00186 to MRJL, FI19/00083 to MCGC, CM20/00243 to APG, and COV20/00698 to support COHVID-GS) and the Red Temática de Investigación Cooperativa en SIDA (RD16/0025/0020 and RD16/0025/0026), which is included in the Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, 2008 to 2011 and 2013 to 2016, Instituto de Salud Carlos III, Fondos FEDER. ERM was supported by the Spanish Research Council (CSIC).Peer reviewe

    Deciphering the quality of SARS-CoV-2 specific T-cell response associated with disease severity, immune memory and heterologous response

    Get PDF
    SARS-CoV-2 specific T-cell response has been associated with disease severity, immune memory and heterologous response to endemic coronaviruses. However, an integrative approach combining a comprehensive analysis of the quality of SARS-CoV-2 specific T-cell response with antibody levels in these three scenarios is needed. In the present study, we found that, in acute infection, while mild disease was associated with high T-cell polyfunctionality biased to IL-2 production and inversely correlated with anti-S IgG levels, combinations only including IFN-γ with the absence of perforin production predominated in severe disease. Seven months after infection, both non-hospitalised and previously hospitalised patients presented robust anti-S IgG levels and SARS-CoV-2 specific T-cell response. In addition, only previously hospitalised patients showed a T-cell exhaustion profile. Finally, combinations including IL-2 in response to S protein of endemic coronaviruses were the ones associated with SARS-CoV-2 S-specific T-cell response in pre-COVID-19 healthy donors’ samples. These results could have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19 and may help for the design of new prototypes and boosting vaccine strategies.NIH (contract to AS, DW), Grant/AwardNumber: 75N9301900065; “Contratación de Personal Investigador Doctor”supported by the European Social Fund and Junta de Andalucía (PAIDIDOCTOR- Convocatoria 2019-2020 toFJO, SB); Instituto de Salud Carlos III,Fondos FEDER. ERM was supported bythe Spanish Research Council (CSIC);Consejería de Transformación Económica, Industria, Conocimiento y Universidades Junta de Andalucía (research project to ERM), Grant/AwardNumber: CV20-85418; Red Temática de Investigación Cooperativa en SIDA, whichis included in the Acción Estratégica en Salud, Plan Nacional de InvestigaciónCientífica, Desarrollo e Innovación Tecnológica, 2008 to 2011 and 2013 to 2016,Grant/Award Numbers: RD16/0025/0020,RD16/0025/0026; Consejeria de Salud Junta de Andalucia (Research contract toJV), Grant/Award Number:RH-0037-2020; Instituto de Salud CarlosIII (PI19/01127 to ERM, CP19/00159 toAGV, FI17/00186 to MRJL, FI19/00083 toCGC, CM20/00243 to APG andCOV20/00698 to support COHVID-GS)Peer reviewe

    Description of SARS-CoV-2 T-cell polyfunctionality features

    Get PDF
    SARS-CoV-2 specific T-cell response has been associated with disease severity, immune memory and heterologous response to endemic coronaviruses. However, an integrative approach combining a comprehensive analysis of the quality of SARS-CoV-2 specific T-cell response with antibody levels in these three scenarios is needed. In the present study we found that, in acute infection, while mild disease was associated with high T-cell polyfunctionality biased to IL-2 production and inversely correlated with anti-S IgG levels, combinations only including IFN-gamma; with absence of perforin production predominated in severe disease. Seven months after infection, both non-hospitalized and previously hospitalized patients presented robust anti-S IgG levels and SARS-CoV-2 specific T-cell response. In addition, only previously hospitalized patients showed a T-cell exhaustion profile. Finally, combinations including IL-2 in response to S protein of endemic coronaviruses, were the ones associated with SARS-CoV-2 S-specific T-cell response in pre-COVID-19 samples from healthy donors. These results have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19 and may help for the design of new prototypes and boosting vaccine strategies.Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades Junta de Andalucia (research Project CV20-85418) (ERM) NIH contract 75N9301900065 (AS, DW) Consejeria de Salud Junta de Andalucia (Research Contract RH-0037-2020 to JV) Instituto de Salud Carlos III (CP19/00159 to AGV, FI17/00186 to MRJL, FI19/00083 to CGC, CM20/00243 to APG and COV20/00698 to support COHVID-GS) Red Temática de Investigación Cooperativa en SIDA (RD16/0025/0020; RD16/0025/0026), which is included in the Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, 2008 to 2011 and 2013 to 2016 Instituto de Salud Carlos III, Fondos FEDER. ERM was supported by the Spanish Research Council (CSIC). “Contratación de Personal Investigador Doctor” supported by the European Social Fund and Junta de Andalucía (PAIDI DOCTOR- Convocatoria 2019-2020). (FJO, SB).N

    SARS-CoV-2 viral load in nasopharyngeal swabs is not an independent predictor of unfavorable outcome

    No full text
    The aim was to assess the ability of nasopharyngeal SARS-CoV-2 viral load at first patient's hospital evaluation to predict unfavorable outcomes. We conducted a prospective cohort study including 321 adult patients with confirmed COVID-19 through RT-PCR in nasopharyngeal swabs. Quantitative Synthetic SARS-CoV-2 RNA cycle threshold values were used to calculate the viral load in log10 copies/mL. Disease severity at the end of follow up was categorized into mild, moderate, and severe. Primary endpoint was a composite of intensive care unit (ICU) admission and/or death (n = 85, 26.4%). Univariable and multivariable logistic regression analyses were performed. Nasopharyngeal SARS-CoV-2 viral load over the second quartile (≥ 7.35 log10 copies/mL, p = 0.003) and second tertile (≥ 8.27 log10 copies/mL, p = 0.01) were associated to unfavorable outcome in the unadjusted logistic regression analysis. However, in the final multivariable analysis, viral load was not independently associated with an unfavorable outcome. Five predictors were independently associated with increased odds of ICU admission and/or death: age ≥ 70 years, SpO2, neutrophils > 7.5 × 103/µL, lactate dehydrogenase ≥ 300 U/L, and C-reactive protein ≥ 100 mg/L. In summary, nasopharyngeal SARS-CoV-2 viral load on admission is generally high in patients with COVID-19, regardless of illness severity, but it cannot be used as an independent predictor of unfavorable clinical outcome.Tis work was supported by National Plan R+D+I 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministry of Economy, Industry, and Competitiveness, Spanish Network for Research in Infectious Diseases [REIPI RD16/0016/0009]; cofnanced by European Develop ment Regional Fund “A way to achieve Europe”, Operative program Intelligent Growth 2014–2020; and supported by Grants from the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Proyectos de Investigación sobre el SARS-CoV-2 y la enfermedad COVID-19 [COV20/00370; COV20/00580]. J.S.C. is a researcher belong ing to the program “Nicolás Monardes” (C-0059-2018), Servicio Andaluz de Salud, Junta de Andalucía, Spain.Ye

    Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and non-hospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers as CD86 and CD4 were only restored in previously non-hospitalized patients while integrin β7 and indoleamine 2,3-dyoxigenase (IDO) no restoration was observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19.This work was supported by Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades Junta de Andalucia (research Project CV20-85418), Consejeria de salud Junta de Andalucia (Research Contract RH0037-2020 to J.V.) the Instituto de Salud Carlos III (CP19/00159 to A.G.-V., FI17/00186 to M.R.J.-L., FI19/00083 to C.G-C, CM20/00243 to A.P-G and COV20/00698 to support COHVID-GS) and the Red Temática de Investigación Cooperativa en SIDA (RD16/0025/0020 and RD16/0025/0026), which is included in the Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, 2008 to 2011 and 2013 to 2016, Instituto de Salud Carlos III, Fondos FEDER. E.R.-M. was supported by the Spanish Research Council (CSIC).N
    corecore